Universität Hannover

Institut für Strömungsmaschinen Prof. Dr.-Ing. J. Seume

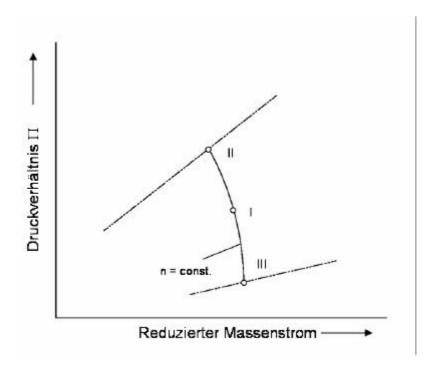
<u>Klausur</u> <u>Strömungsmaschinen</u> <u>SS 2005</u>

23. August 2005, Beginn 13:00 Uhr

Prüfungszeit: 90 Minuten

Zugelassene Hilfsmittel sind:

- das Vorlesungsskript (einschließlich handschriftlicher Notizen) und die zugehörigen Abbildungen
- Taschenrechner, Geodreieck, Zeichenmaterial.

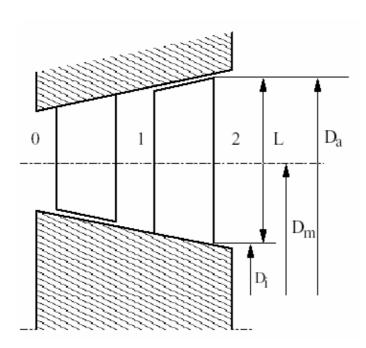

Andere Hilfsmittel, insbesondere Handys, PCs und Fachbücher und auch die Übungsmaterialien sind <u>nicht zugelassen</u>.

Aufgabe	geschätzte Dauer	Punkte
1. Axialverdichter	10 min	22
2. Axialturbine	35 min	60
3. Radialturbine	10 min	18
Gesamt	55 min	100

Wir wünschen Ihnen viel Erfolg!

Prof. J. Seume und E. Imetovski

1) Axialverdichter



Das oben dargestellte Diagramm zeigt die Stufenkennlinie einer Axialverdichterrepetier-Stufe ($c_{ax} = const.$; drallfreie Zuströmung) für eine konstante Drehzahl. Der Auslegungspunkt ist durch "I", die Betriebsgrenzen durch "II" und "III" gegenzeichnet.

- a) Ordnen Sie folgende Begriffe den jeweiligen Betriebsgrenzen zu und beschreiben Sie kurz die Vorgänge, welche die Betriebsgrenzen verursachen:
 - Pumpgrenze
 - Schluckgrenze
- b) Auf welcher Seite des Schaufelprofils löst die Strömung in den Betriebszuständen "II" und "III" ab? (Begründung)
- c) Erläutern Sie den Pumpzyklus und stellen Sie ihn im Diagramm dar.
- d) Worin unterscheidet sich das "Pumpen" vom "Rotating Stall"?

2) Axialturbine

Die folgende Abbildung zeigt schematisch die erste Stufe einer axialen Gasturbine. Nach einer ersten Auslegungsrechnung sind folgende Abmessungen und Strömungszustände für den Mittelschnitt gegeben:

Durchmesser des Mittelschnitts	$D_{\rm m}$	=	0,432	m
Drehzahl	n	=	15000	1/min
Schaufelhöhe am Eintritt des Stators	L_0	=	0,046	m
Schaufelhöhe am Eintritt des Rotors	L_1	=	0,061	m
Schaufelhöhe am Austritt des Rotors	L_2	=	0,077	m
Schaufeleintrittswinkel, Stator	α_0	=	90	0
Schaufeleintrittswinkel, Rotor (Absolutwinkel)	α_1	=	31,6	0
Schaufelaustrittswinkel, Rotor (Absolutwinkel)	α_2	=	80	0
Totaltemperatur am Eintritt, Stator	T_{t0}	=	1100	K
statische Temperatur am Eintritt, Stator	T_0	=	1068	K
statische Dichte am Eintritt, Stator	ρ_0	=	2,15	kg/m³
spezifische Wärmekapazität	c_p	=	1142	J/(kgK)
Gaskonstante der Luft	Ŕ	=	287,22	J/(kgK)

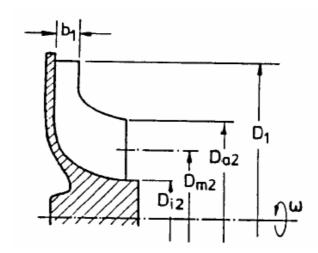
Achtung: Winkel beziehen sich auf die Ebene senkrecht zur Maschinenachse (Umfangsrichtung entspricht dem Winkel von 0°)!!!

Folgende Annahmen können getroffen werden:

- die Leitschaufeln werden axial angeströmt
- die Geschwindigkeit cax bleibt im Mittenschnitt konstant
- die Totalenthalpie sei über die Schaufelhöhe konstant
- die Strömung sei isentrop, reibungsfrei und stationär

Aufgaben:

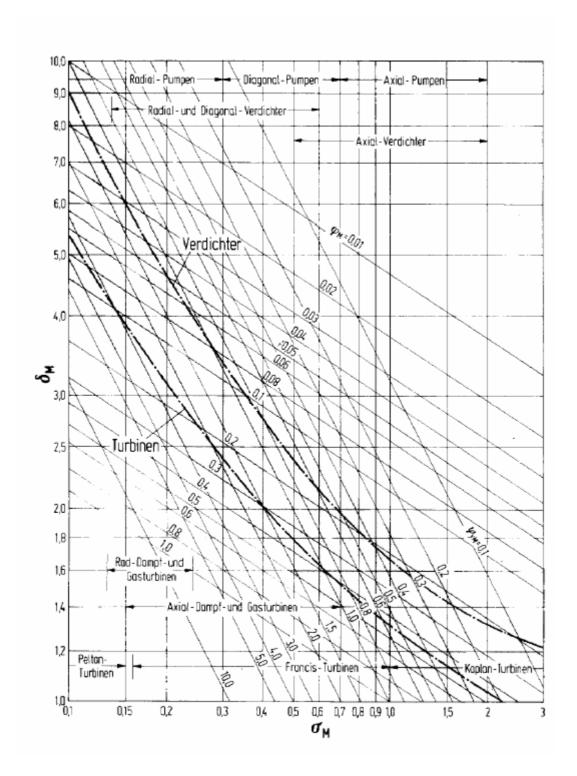
- a) Bestimmen Sie die Absolutgeschwindigkeit im Mittenschnitt in der Ebene 0 vor dem Stator und die Umfangsgeschwindigkeit in der Ebene 1 vor dem Rotor.
- b) Bestimmen Sie die vollständigen Geschwindigkeitsdreiecke im Mittenschnitt für die Ebenen 1 und 2. Wie groß ist der relative Zu- und Abströmwinkel?
- c) Berechnen Sie die aerodynamische Stufenarbeit mit Hilfe der unter b) berechneten Daten. Welche Leistung gibt das Laufrad ab?
- d) Ermitteln Sie den kinematischen Reaktionsgrad, die Durchflusszahl Φ und die Schaufelarbeitszahl Ψ für den Rotor.


Zusatzaufgabe:

- e) Die Beschaufelung der Turbinenstufe soll unter Beachtung des einfachen radialen Gleichgewichts ausgelegt werden. Dabei gibt es für die Schaufelauslegung zwei Auslegungskriterien:
 - die Axialgeschwindigkeit ist über die Schaufelhöhe konstant (c_{ax} (r) = const.)
 - der Austrittswinkel bleibt über die Schaufelhöhe unverändert (α (r) = const.)

Leiten Sie für jedes Auslegungskriterium den Zusammenhang zwischen Umfangsbzw. Axialgeschwindigkeit und Radius her. Welche der beiden Auslegungsvarianten lässt eine einfachere Schaufelfertigung erwarten?

3) Radialturbine


Folgende Abbildung zeigt das Laufrad einer einstufigen Zentripetalturbine für einen Abgasturbolader.

Massenstrom	ṁ	=	0,95	kg/s
Druckverhältnis Stufeneintritt/ Stufenaustritt	p_0/p_2	=	1,8	-
statischer Druck am Eintritt	p_0	=	1,8	bar
statische Temperatur am Eintritt	T_0	=	700	K
statische Temperatur am Austritt	T_2	=	618	K
stat. polytroper Stufenwirkungsgrad	η_{T}	=	0,82	-
Nabenverhältnis	D_{m2}/D_1	=	0,45	
Isentropenexponent	κ	=	1,35	-
Gaskonstante des Verbrennungsgases (id. Gas)	R	=	288	J/kgK

Mit Hilfe des unten aufgeführten Cordier-Diagramms ist die Berechnung des die Maschinenabmessungen charakterisierenden maximalen Laufraddurchmessers D_1 durchzuführen. Für die Wahl des Laufraddurchmessers steht eine Standardreihe zur Verfügung ($D_1 = 100/\ 150/\ 225/\ 350/\ 500$ mm).

- a) Wozu wird ein Cordier-Diagramm verwendet?
- b) Ermitteln Sie für die für die optimale spezifische Drehzahl $\sigma_M = 0.15$ die Druckkenngröße ψ_M , die Durchflusskenngröße ϕ_M und den spezifischen Durchmesser δ_M .
- c) Berechnen Sie die entsprechende Turboladerdrehzahl.
- d) Bestimmen Sie aus der Standardreihe den optimalen Laufraddurchmesser.

