

Institut für Turbomaschinen und Fluid-Dynamik - TFD

- Prof. Dr.-Ing. Jörg Seume -

Gottfried Wilhelm Leibniz Universität Hannover L.I.I-I

Klausur Strömungsmaschinen SS 2007

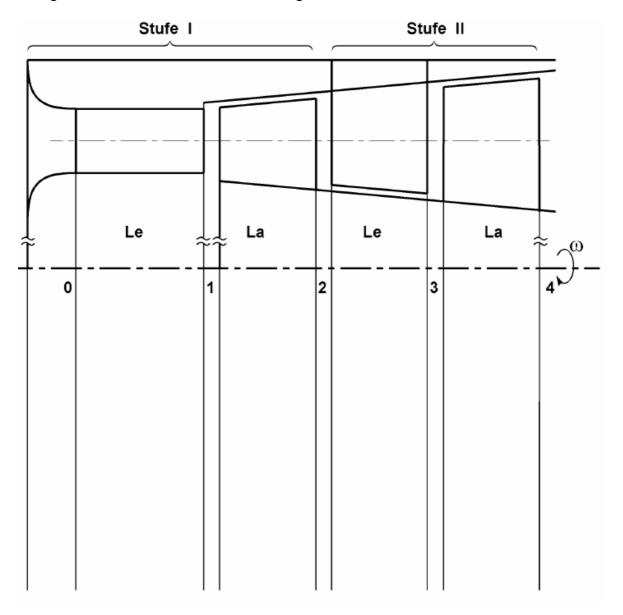
21. August 2007, Beginn 13:00 Uhr

Prüfungszeit: 90 Minuten

Zugelassene Hilfsmittel sind:

- das Vorlesungsskript (einschließlich handschriftlicher Notizen) und die zugehörigen Abbildungen
- Taschenrechner, Geodreieck, Zeichenmaterial.

Andere Hilfsmittel, insbesondere Handys, PCs und Fachbücher und auch die Übungsmaterialien sind <u>nicht zugelassen</u>.


Aufgabe	geschätzte Dauer	Punkte	
1. Axialturbine	10 min	17	
2. Axialverdichter	35 min	62	
3. Impulssatz am Schaufelgitter	10 min	21	
Gesamt	55 min	100	

Wir wünschen Ihnen viel Erfolg!

Prof. J. Seume und E. Imetovski

1) Axialturbine

In folgender Abbildung ist eine zweistufige Axialturbine dargestellt. Die Expansion erfolgt adiabat. Die An- und Abströmung der Turbine ist dabei drallfrei.

Aufgaben:

- a) Stellen Sie die Zustandsänderungen im h,s-Diagramm dar (statische und totale Zustände, kinetische Energieanteile, aerodynamische Stufenarbeiten). Dabei arbeite die Laufschaufelreihe der Stufe I und die Leitschaufelreihe der Stufe II als Umlenkgitter, die Laufschaufelreihe der Stufe II als Gleichdruckgitter.
- b) Skizzieren Sie die Schaufelschnitte (jeweils 2 Profile) unterhalb des in obiger Abbildung dargestellten Meridianschnittes. Zeichnen Sie an den Einund Austrittskanten jedes Schaufelgitters die maßgebenden Geschwindigkeitsvektoren ein, und geben Sie die Bewegungsrichtung der Laufradgitter an.

2) Axialverdichter

Die erste Stufe eines adiabaten Mitteldruckverdichters ist als Repetierstufe ausgeführt. Das Arbeitsfluid ist Umgebungsluft und wird als ideales Gas mit κ = 1,4 und c_p = 287 J/(kgK) betrachtet. Dabei bleibt die Geschwindigkeit c_{ax} im Mittenschnitt konstant. Folgende Daten des Verdichters sind gegeben:

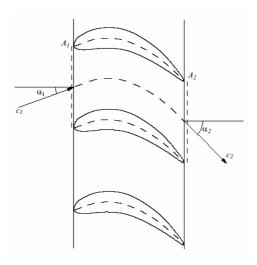
Schaufelarbeitszahl	Ψ	=	-0,6	
Durchflusszahl	ф	=	0,5	= const.
mittlerer Durchmesser	\dot{D}_{m}	=	0,7	m
Schaufelhöhe am Eintritt	H_1	=	30	mm
Eintrittsdrall (absolut)	α_1	=	60	0
Eintrittsgeschwindigkeit (absolut)	C ₁	=	150	m/s
Eintrittstemperatur	T_1	=	315	K
Eintrittsdruck	p_1	=	1,4	bar

Achtung: Winkel beziehen sich auf die Ebene senkrecht zur Maschinenachse (Umfangsrichtung entspricht dem Winkel von 0°)!!!

Aufgaben:

- a) Skizzieren Sie einen Meridianschnitt der Verdichterstufe und tragen Sie die drei Kontrollebenen ein.
- b) Ermitteln Sie die axiale Komponente der Absolutgeschwindigkeit und die Umfangsgeschwindigkeit am Eintritt des Laufrades. Bei welcher Drehzahl arbeitet der Verdichter?
- c) Berechnen Sie den Massenstrom und die aerodynamische Stufenarbeit. Ermitteln Sie die Stufenleistung.
- d) Bestimmen Sie die vollständigen Geschwindigkeitsdreiecke in den drei Ebenen. Wie groß sind der relative und der absolute Zu- und Abströmwinkel? Wie groß ist die Absolutgeschwindigkeit am Stufenaustritt?

Zusatzaufgaben:


- e) Ermitteln Sie den kinematischen Reaktionsgrad.
- f) Welche Konsequenz hat eine Fehlanströmung (α_1 '< α_1 und α_1 '> α_1) des Laufrades (bei gleichbleibender Eintrittsgeschwindigkeit c_1) auf das Betriebsverhalten des Verdichters? Begründen Sie dies anhand von Geschwindigkeitsdreiecken. Tragen Sie die sich einstellenden Betriebspunkte in ein Kennfeld ein und geben Sie die jeweiligen Betriebsgrenzen an.

3) Impulssatz am Schaufelgitter

Ein ebenes Leitradgitter wird durchströmt. Gegeben sind die Eintrittsgeschwindigkeit $\overrightarrow{c_1}$, der Eintrittswinkel α_1 und der Austrittswinkel α_2 .

Annahmen:

- die Strömung kann als reibungsfrei, stationär und inkompressibel betrachtet werden
- die Eingangs- bzw. Ausgangsflächen des Strömungskanals seien gleich groß

Aufgaben:

- c) Berechnen Sie die Druckdifferenz, welche sich über das Gitter einstellt in Abhängigkeit der gegebenen Größen.
- d) Tragen Sie die Vektoren $\overrightarrow{n_1}$ und $\overrightarrow{n_2}$ in obige Abbildung ein, und geben Sie diese an.
- e) Berechnen Sie die Axial- und Umfangskraft, die die Strömung aufgrund der Umlenkung auf eine Schaufel ausübt, in Abhängigkeit von Ein- und Austrittswinkel und Eintrittsgeschwindigkeit.
- f) Wie verhalten sich die Drücke und Geschwindigkeiten für ein:
 - Verzögerungsgitter
 - Beschleunigungsgitter

Ordnen Sie diesen beiden Gittertypen den jeweiligen Maschinentyp (Verdichter, Turbine) zu.