Klausur

Strömungsmaschinen I

SS 2011

17. August 2011, Beginn 13:00 Uhr

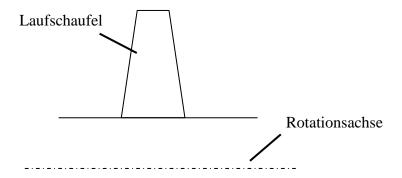
Prüfungszeit: 90 Minuten

Zugelassene Hilfsmittel sind:

- Vorlesungsskript (einschließlich handschriftlicher Notizen) und zugehörige Abbildungen
- Foliensatz
- Taschenrechner, Geodreieck, Zeichenmaterial

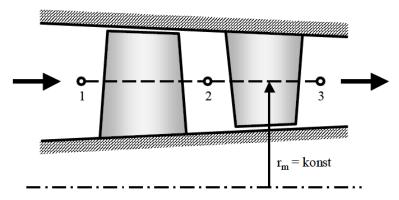
Nicht zugelassene Hilfsmittel sind:

- Alte Klausuren
- Übungen der Vorlesung
- Handy, Laptop, Fachbücher, programmierbarer Taschenrechner, sonstige Fachunterlagen
- Bleistift sowie rote Stifte!


Aufgabe	geschätzte Dauer	Punkte
1. Verständnisfragen	10 min	
Axialverdichter	10 min	
3. Radiales Gleichgewicht	15 min	
4. Design einer Turbinenstufe	10 min	
5. Radialturbine	15 min	
Gesamt	60 min	

Name, Vorname:	
Matrikelnummer:	

Wir wünschen Ihnen viel Erfolg! Prof. J. Seume R. Adamczuk / C. Natkaniec


1. Verständnisfragen

- a) Wieso leistet bei einer Gasturbine die Turbine mehr als für den Betrieb des Verdichters notwendig ist, obwohl die Turbine nur den Druck abbauen kann, der durch den Verdichter aufgebaut wurde?
- b) Skizzieren Sie einen verlustbehafteten und einen insentropen Kompressions- und Expansions-Prozess in ein T-s-Diagramm und leiten Sie anhand der Enthalpieänderungen die Beziehungen für den isentropen Wirkungsgrad η_s der Kompression bzw. der Expansion ab
- c) Skizzieren Sie schematisch in die untenstehende Abbildung den Verlauf der Axialgeschwindigkeit c_{ax} über die Laufschaufelhöhe, wenn die Laufschaufel nach dem free vortex Ansatz ausgelegt wurde. Wieso wurden ursprünglich die meisten Schaufeln nach dem Prinzip ausgelegt?

- d) Zeichnen Sie schematisch die Geschwindigkeitsdreiecke am Eintritt einer Verdichterlaufschaufel im Naben-, Mitten- und Außenschnitt bei über die Schaufelhöhe konstantem <u>Zuströmwinkel</u> sowie konstanter <u>Zuströmgeschwindigkeit</u>.
- e) Skizzieren Sie den qualitativen Verlauf der Größen h, h_t, p_t, p, c und w in axialer Richtung einer Verdichterstufe.

2. Axialverdichter

Abbildung 2.1: Axialverdichter

Die Abbildung 2.1 zeigt schematisch einen einstufigen Axialverdichter mit konstantem Eulerradius, drallfreier Zu- und Abströmung sowie den Betriebsdaten aus der nachfolgenden Tabelle.

Eulerradius der Beschaufelung	$r_{_E}$	=	200	[mm]
Drehzahl	n	=	12000	[1/min]
Massendurchsatz	\dot{m}	=	8	[kg/s]
Stufenleistung	P	=	150	[kW]
Axialgeschwindigkeit am Eintritt	$c_{ax,1}$	=	110	[m/s]

Annahmen:

- Medium: Luft, angenommen als ideales Gas mit $c_p = konst$.
- Alle Berechnungen werden für den Eulerradius durchgeführt.
- Die axiale Geschwindigkeit ist wegen der Zustandsänderung sowie Querschnittsänderung konstant ($c_{\alpha x,1} = c_{\alpha x,2} = c_{\alpha x,3}$).
- Die Verdichtung erfolgt adiabat.

Aufgaben:

- a) Berechnen Sie die Geschwindigkeiten u, c_1 , c_2 , w_1 und w_2 .
- b) Zeichnen Sie die vollständigen Geschwindigkeitsdreiecke im Eulerradius in den Ebenen 1 und 2.

3. Radiales Gleichgewicht

Für eine Stufe einer Axialturbine sollen nach der Leitschaufel die Geschwindigkeitsdreiecke an der Schaufelspitze sowie an der Nabe bestimmt werden.

Abströmwinkel	α_1	=	35 [°]
Drehzahl	n	=	50 [1/s]
Radius an der Nabe	r_N	=	0,4 [m]
Radius an der Spitze	r_{S}	=	0,6 [m]
Axialgeschwindigkeit im mittleren Radius	$c_{ax1,M}$	=	160 [m/s]

Annahmen

- $\alpha_1(r) = const.$
- Im mittleren Radius gilt $c_{ax} = const.$
- Keine Krümmung der Meridianstromlinie d.h. $c_m = c_{ax}$
- Das Geschwindigkeitsdreieck ist wie folgt definiert. Die Abbildung soll die Definition des Winkels α verdeutlichen und macht keine Aussagen über die Geschwindigkeiten!

Aufgaben:

a) Leiten Sie die Beziehungen für die Verteilung von c_{u1} sowie c_{ax1} über den Schaufelhöhe her. Verwenden Sie hierfür die vereinfachte Beziehung

$$\frac{c_u^2}{r} + c \frac{dc}{dr} = 0$$

Die Integrationskonstante muss dabei nicht berechnet werden!

b) Berechnen Sie am Eintritt in die Laufschaufel die Geschwindigkeitsdreiecke (c₁, u₁ und w₁) an der Schaufelspitze sowie an der Nabe mit den in Aufgabenteil a) hergeleiteten Beziehungen. Sollten Sie Aufgabenteil a) nicht gelöst haben verwenden Sie die Beziehungen:

$$c_{ax1} = \frac{b_1}{r^{0,6}} \qquad c_{u1} = \frac{b_2}{r^{0,6}}$$

Die Beziehungen sind nicht die Lösung von Aufgabenteil a)!

4. Design einer Turbinenstufe

Für eine Axialturbine sind folgende Daten bekannt:

Leistung	P	=	10	[MW]
Massendurchsatz	ṁ	=	100	[kg/s]
Eintrittsdruck	p_{E}	=	6,0	[bar]
Austrittsdruck	p_{A}	=	1,0	[bar]
Turbineneintrittstemperatur	T_{E}	=	900	[K]
Isentroper Enthalpieabbau	$ \Delta h_s $	=	120	[kJ/kg]
Nabenverhältnis am Turbineneintritt	V_{E}	=	0,7	[-]
Schaufelhöhe am Eintritt	H_{E}	=	0,15	[m]
spezifische Wärmekapazität	<i>c</i> _{<i>p</i>}	=	1004,5	[J/kgK]

Annahmen:

- 1. Der Nabendurchmesser ist konstant.
- 2. Die Axialgeschwindigkeit ist am Ein- sowie Austritt gleich.
- 3. Die Axialgeschwindigkeit ist gleich der Meridiangeschwindigkeit $c_{ax} = c_{m}$
- 4. Das Medium Luft kann als ideales Gas angenommen werden mit $c_n = konst$.
- 5. Die Zustandsänderung in der Turbine kann als adiabat betrachtet werden.
- 6. Der Betrag der Absolutgeschwindigkeit bleibt am Ein- und Austritt konstant.

Aufgaben:

- a) Bestimmen Sie den isentropen Wirkungsgrad η_s sowie die Austrittstemperatur hinter der Turbine T_A .
- b) Bestimmen Sie den mittleren Durchmesser am Eintritt der Turbine d_{mE} , sowie die Eintritts- und Austrittsfläche A_E und A_A der Turbine.

5. Radialturbine

Die folgende Abbildung zeigt das Laufrad einer einstufigen Radialturbine eines Abgasturboladers.

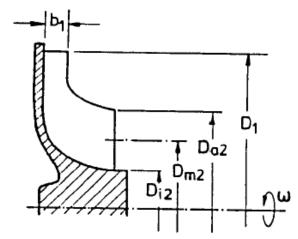


Abbildung 5.1: Laufrad einer Radialturbine

Mit Hilfe des in Abbildung 5.2 gegebenen Cordier-Diagramms ist die Berechnung des maximalen Laufraddurchmessers D_1 durchzuführen. Für die Wahl des Laufraddurchmessers steht eine Standardreihe zur Verfügung $(D_1 = 60 / 80 / 100 / 120 / 140 \text{ mm})$.

Die folgende Abmessungen und Strömungszustände sind gegeben:

Drehzahl	n	=	94.000	[1/min]
Massendurchsatz	ṁ	=	0,2	[kg/s]
statischer Druck am Eintritt	$p_{_1}$	=	1,9	[bar]
statische Temperatur am Eintritt	T_{1}	=	870	[K]
statische Temperatur am Austritt	T_{2}	=	750	[K]
stat. polytroper Stufenwirkungsgrad	$\eta_{_T}$	=	0,8	[-]
Isentropenexponent	К	=	1,34	[-]
Gaskonstante des Verbrennungsgases (id. Gas)	R	=	288	[J/kgK]

Annahmen:

- 1. Das Verbrennungsgas kann als ideales Gas angenommen werden.
- 2. Die Zustandsänderung in der Turbine kann als adiabat und polytrop betrachtet werden.

Klausur Strömungsmaschinen I	Name, Vorname:
Sommersemester 2011	Matrikelnummer:

Aufgaben:

- a) Bestimmen Sie die spezifische Stufenarbeit y und den Volumenstrom \dot{V} am Laufradeintritt.
- b) Berechnen Sie für die Drehzahl $n=94.000~{
 m min}^{-1}$ die spezifische Drehzahl $\sigma_{
 m M}$
- c) Ermitteln Sie im Cordier-Diagramm den spezifischen Durchmesser $\delta_{\rm M}$. Wählen Sie einen geeigneten Laufraddurchmesser D₁ aus der gegebenen Standardreihe.

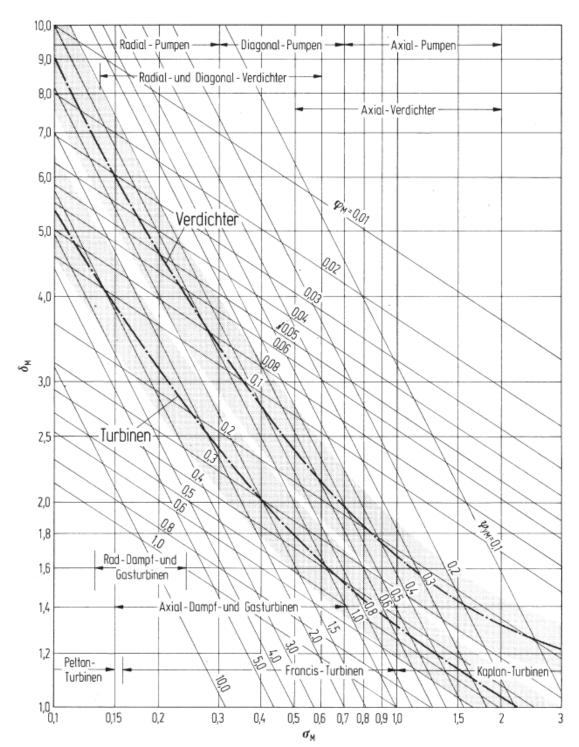


Abbildung 5.2: Cordier-Diagramm