### Klausur

# Strömungsmaschinen I

WS 2010/11

08. März 2011, Beginn 13:00 Uhr

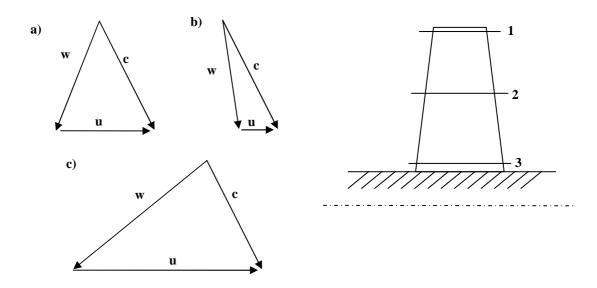
Prüfungszeit: 90 Minuten

#### Zugelassene Hilfsmittel sind:

- Vorlesungsskript (einschließlich handschriftlicher Notizen und Formelsammlung) und zugehörige Abbildungen
- Foliensatz
- Taschenrechner, Geodreieck, Zeichenmaterial

### Nicht zugelassene Hilfsmittel sind:

- Alte Klausuren
- Übungen der Vorlesung
- Handy, Laptop, Fachbücher, programmierbarer Taschenrechner, sonstige Fachunterlagen
- Bleistift sowie rote Stifte!


| Aufgabe              | geschätzte Punkte<br>Dauer |
|----------------------|----------------------------|
| 1. Verständnisfragen | 15 min                     |
| 2. Axialverdichter   | 30 min                     |
| 3. Radialturbine     | 15 min                     |
| Gesamt               | 60 min                     |

| Name, Vorname:  |  |
|-----------------|--|
| Matrikelnummer: |  |

Wir wünschen Ihnen viel Erfolg! Prof. J. Seume R. Adamczuk / C. Natkaniec

# 1. Verständnisfragen

- a) Nennen Sie die aerodynamisch bedingten Betriebsgrenzen im  $\dot{m}$   $\pi$  -Kennfeld eines Verdichters
- b) Skizzieren Sie eine saugseitige Inzidenz mit Hilfe eines Geschwindigkeitsvektors an einem Turbinenprofil.
- c) Skizzieren Sie einen verlustbehafteten und einen insentropen Kompressions- und Expansions-Prozess in ein h-s-Diagramm und leiten Sie anhand der Enthalpieänderungen die Beziehungen für den isentropen Wirkungsgrad  $\eta_s$  der Kompression bzw. der Expansion ab.
- d) Was ist der Unterschied zwischen dem Eulerradius und dem Radius im Mittenschnitt?
- e) Ordnen Sie die Geschwindigkeitsdreiecke den entsprechenden Schnitten der Turbinenschaufel zu



- f) Aus welchem Grund sind die Laufschaufelblätter von axialen Turbomaschinen häufig verjüngt?
- g) Skizzieren Sie den qualitativen Verlauf der Größen h, h<sub>t</sub>, p<sub>t</sub>, p, c und w in axialer Richtung einer Turbinenstufe.

## 2. Axialverdichter

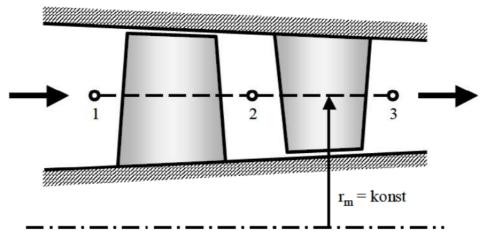



Abbildung 2.1: Axialverdichter

Die Abbildung 2.1 zeigt schematisch einen einstufigen Axialverdichter mit konstantem Radius im Mittenschnitt, drallfreier Zu- und Abströmung sowie den Betriebsdaten aus der nachfolgenden Tabelle.

| statische Referenztemperatur (für Luft)                           | $T_{ref}$     | = | 288,15  | [K]                            |
|-------------------------------------------------------------------|---------------|---|---------|--------------------------------|
| statischer Referenzdruck (für Luft)                               | $p_{\it ref}$ | = | 1,01325 | [bar]                          |
| statischer Druck am Stufeneintritt                                | $p_1$         | = | 1,0     | [bar]                          |
| Druckverhältnis der Stufe                                         | $\pi$         |   | 1,27    | [-]                            |
| Radius in der Schaufelmitte                                       | $r_m$         | = | 140     | [mm]                           |
| Radialkomponente der Absolutgeschwindigkeit nach der Laufschaufel | $C_{u2}$      | = | 120     | $\left[\frac{m}{s}\right]$     |
| Reaktionsgrad                                                     | r             | = | 0,7     | [-]                            |
| Massenstrom                                                       | ṁ             | = | 12      | $\left[\frac{kg}{s}\right]$    |
| Axialgeschwindigkeit am Eintritt                                  | $c_{ax,1}$    | = | 100     | $\left[\frac{m}{s}\right]$     |
| Isentropenexponent                                                | К             | = | 1,4     | [-]                            |
| Druckzahl                                                         | $\Psi_{\!D}$  | = | -0,5    | [-]                            |
| Spezifische Wärmekapazität                                        | $c_p$         | = | 1004,5  | $\left[\frac{J}{kg\ K}\right]$ |
| Gaskonstante                                                      | R             | = | 287     | $\left[\frac{J}{kg\ K}\right]$ |

- Medium: Luft, angenommen als ideales Gas mit  $c_p = konst$ .
- Alle Berechnungen werden im Mittenschnitt durchgeführt.
- Für die Umrechnung zwischen reduzierten und realen Größen sind die Zustandsgrößen am Eintritt einzusetzen.
- Die axiale Geschwindigkeit sei in diesem Falle aufgrund der Thermodynamischen- sowie Querschnittsänderung konstant  $c_{ax,1} = c_{ax,2} = c_{ax,3}$
- Für den Reaktionsgrad soll die folgende Definition verwendet werden:

```
r_k = \frac{statische\ Enthalpie \ddot{a}nderung\ im\ Laufrad}{statische\ Enthalpie \ddot{a}nderung\ in\ der\ Stufe}
```

Die Verdichtung erfolgt adiabat.

### Aufgaben:

- a) Berechnen Sie die Leistung des Verdichters. (Hinweis: Skizzieren sie zunächst zum besseren Verständnis dieses Aufgabenteils die Geschwindigkeitsdreiecke. Verwenden Sie zur Herleitung den oben genannten Reaktionsgrad!)
- b) Berechnen Sie die Geschwindigkeiten  $c_1$ ,  $c_2$ ,  $w_1$  und  $w_2$ . Zeichnen Sie die Geschwindigkeitsdreiecke im Mittenschnitt in den Ebenen 1 und 2 mit einer Genauigkeit von  $\pm 10\%$ .
- c) Erfüllt die Laufschaufel das De-Haller-Kriterium?
- d) Berechnen Sie im Mittenschnitt die Durchflusszahl  $\phi$  und die Leistungszahl  $\Psi$  sowie die Drehzahl n und den isentropen Wirkungsgrad  $\eta_{s,\nu}$ .
- e) Bestimmen Sie die statische Temperatur  $T_1$  am Eintritt sowie  $\dot{m}_{red}$  und  $n_{red}$ . Skizzieren Sie schematisch ein Verdichterkennfeld mit den zugehörigen Kennfeldgrößen und tragen Sie den Betriebspunkt ein. Kennzeichnen Sie die aerodynamisch bedingten Betriebsgrenzen.

### 3. Radialturbine

Die Abbildung 3.1 zeigt das Laufrad einer einstufigen Radialturbine eines Abgasturboladers.

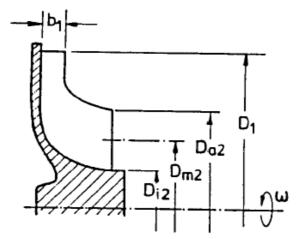



Abbildung 3.1: Laufrad einer Radialturbine

Mit Hilfe des in Abbildung 3.2 gegebenen Cordier-Diagramms ist die Berechnung des maximalen Laufraddurchmessers  $D_1$  durchzuführen. Der Laufraddurchmessers ist aus folgender Standardreihe zu wählen  $(D_1 = 50 / 70 / 90 / 110 / 130 \text{ mm})$ .

Die folgende Abmessungen und Strömungszustände sind gegeben:

| Drehzahl                                     | n                             | = | 110.000 | min <sup>-1</sup> |
|----------------------------------------------|-------------------------------|---|---------|-------------------|
| Massendurchsatz                              | ṁ                             | = | 0,22    | kg/s              |
| statischer Druck am Eintritt                 | $p_1$                         | = | 2,6     | bar               |
| statische Temperatur am Eintritt             | $T_1$                         | = | 875     | K                 |
| statische Temperatur am Austritt             | $T_2$                         | = | 745     | K                 |
| stat. polytroper Stufenwirkungsgrad          | $\eta_{\scriptscriptstyle T}$ | = | 0,8     |                   |
| Isentropenexponent                           | К                             | = | 1,34    |                   |
| Gaskonstante des Verbrennungsgases (id. Gas) | $\overline{R}$                | = | 288     | J/kgK             |

#### Annahmen:

- 1. Das Verbrennungsgas kann als ideales Gas angenommen werden.
- 2. Die Zustandsänderung in der Turbine kann als adiabat und polytrop betrachtet werden.

| Klausur Strömungsmaschinen I | Name, Vorname:  |
|------------------------------|-----------------|
| Wintersemester 2010 / 11     | Matrikelnummer: |

## Aufgaben:

- a) Bestimmen Sie die spezifische Stufenarbeit y und den Volumenstrom  $\dot{V}$  am Laufradeintritt.
- b) Berechnen Sie für die Drehzahl  $n=110.000\,\mathrm{min^{-1}}$  die spezifische Drehzahl  $\sigma_\mathrm{M}$ .
- c) Ermitteln Sie im Cordier-Diagramm den spezifischen Durchmesser  $\delta_{\rm M}$ . Wählen Sie einen geeigneten Laufraddurchmesser D<sub>1</sub> aus der gegebenen Standardreihe.

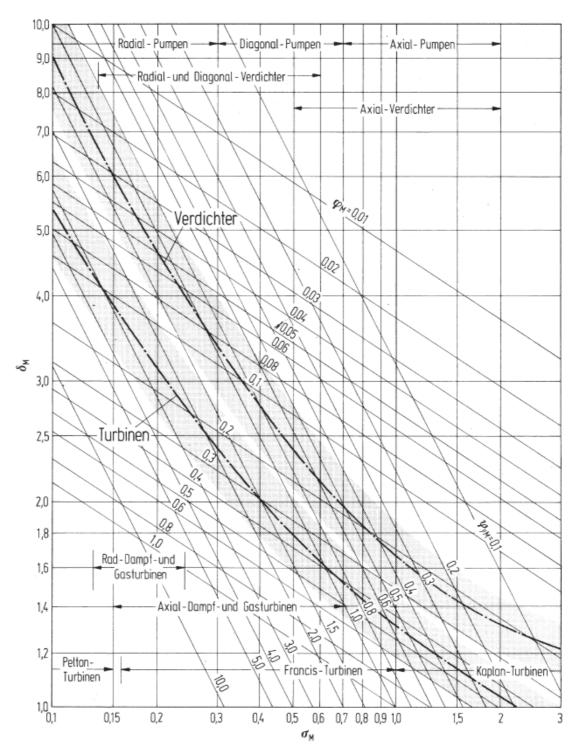



Abbildung 3.2: Cordier-Diagramm